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1. Introduction

Any scenario of baryogenesis aims at reproducing the observed matter-antimatter asym-

metry of the Universe, usually quantified as the baryon-to-photon number density ratio [1],

nB

nγ
= 6.1 × 10−10. (1.1)

In the original electroweak baryogenesis scenario, this is achieved using Standard Model

(SM) physics (or electroweak physics of a supersymmetric extension of the SM), at a first

order electroweak phase transition [2] (see [3] for a review). Within the SM proper, the

electroweak phase transition is a cross-over and cannot accommodate the required out-of-

equilibrium conditions for successful baryogenesis [4]. Furthermore, the SM CP-violation

in the CKM fermion mass matrix appears to be insufficient by many orders of magnitude at

temperatures of order of the electroweak scale [5 – 7, 3]. In particular, this was established

in [8, 9] for electroweak baryogenesis taking place at a phase boundary during a first order

phase transition, and it was concluded that a possible CP-enhancement mechanism put

forward in [10, 11] is not viable. In Cold Electroweak Baryogenesis, a period of inflation is

assumed to end at the electroweak scale [12, 13], and subsequently electroweak symmetry

breaking takes place at zero temperature, is strongly out of equilibrium through the process

of tachyonic preheating, and is also responsible for the (re)heating of the Universe. Further

details on different aspects of the scenario can be found in [14 – 16] (low-scale inflation), [17 –

19] (electroweak tachyonic preheating), [20 – 22] (generation of the asymmetry), [23] (SM

CP-violation at zero temperature). This work is a continuation of [22], where full lattice

simulations of the electroweak transition including CP-violation were carried out.

– 1 –



J
H
E
P
0
8
(
2
0
0
6
)
0
1
2

2. The SU(2)-Higgs model with CP-violation

We study the model described by the action (we use the metric (− + ++)):

S = −
∫

d3x dt

[

1

2g2
TrFµνFµν +(Dµφ)†Dµφ+ ε+µ2

eff(t)φ†φ+λ(φ†φ)2 +κφ†φTrFµν F̃µν

]

,

(2.1)

where ε is such that the energy density in the ground state is zero, µeff is a time-dependent

effective mass for the Higgs field and κ parametrises the strength of effective CP violation.

In Cold Electroweak Baryogenesis, Higgs symmetry breaking is triggered by a coupling to

an inflaton. In Inverted Hybrid Inflation [24, 14], e.g. the one in [16],

µ2
eff(t)φ†φ =

[

µ2 − λσφσ2(t)
]

φ†φ, (2.2)

where σ(t) is the time-dependent expectation value of the inflaton field. As in [22] we will

specialise to the instantaneous quench,

µ2
eff(t < 0) = µ2, µ2

eff(t > 0) = −µ2, ε = µ4/(4λ). (2.3)

The case of non-zero quench time will be treated in a separate publication [25]. A suf-

ficiently rapid change of sign in µ2
eff induces a spinodal instability with large occupation

numbers, enabling us to use a classical approximation [18, 20, 22, 26].

The CP-violating term is to be thought of as an effective interaction. It was expected to

appear upon integrating out the fermions in the SM [6, 7], but a later study [23] concluded

against this. It could be one of several six-dimensional contributions coming from physics

beyond the SM [27]. The parameter κ is dimensionful and can be written in terms of a

dimensionless parameter δcp as

κ =
3δcp

16π2m2
W

. (2.4)

For definiteness we have used mW as the mass scale in (2.4). This is a rather low scale

for physics beyond the SM. Six-dimensional CP-violating effective interactions of the four-

fermion type have been estimated to be limited by measurements of the electric dipole

moment by a mass scale of at least 104 TeV [28]. A scale such as κ−1/2 = 104 TeV would

correspond to a small δcp of order 10−9. However, we expect the effect of the φ†φFF̃

interaction on the electric dipole moment to be reduced by a factor y2, with y = 0.3 ×
10−5 the Yukawa coupling of the electron to the Higgs field. Using dimensional analysis

to estimate the (three-loop) contribution of the φ†φFF̃ interaction to the electric dipole

moment we found δcp . 10−2. In the following we will ignore limits on δcp and vary it

freely to gain information on the properties of tachyonic baryogenesis.

The SM mW = gv/2, with v the vacuum expectation of the Higgs field, v2 = µ2/λ.

Experimentally, mW ' 80.5 GeV and v = 246 GeV, which fixes the gauge coupling to be

g ' 0.65. We use g = 2/3 corresponding to mW = 82 GeV. We will allow the Higgs mass

to vary relative to the W mass, determining the Higgs self-coupling through
(

mH

mW

)2

=
8λ

g2
. (2.5)

For the cases considered here, m2
H/m2

W = 2, 3, 4.

– 2 –
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We choose δcp to be in the interval δcp = [0, 1]. The aim is to interpolate to very small

values of δcp since, as we will see, to reproduce the observed baryon asymmetry we will

need δcp = O(10−5). Ideally, we are looking for a linear regime at small δcp. In [22], we

found that the dependence is non-linear for the range of δcp used there, and the present

work zooms in on the interval between zero and the first non-zero value of δcp in [22].

2.1 Equations of motion and observables

The action is discretised on the lattice and the classical equations of motion are derived

(for details on the lattice implementation, see [22]). In the continuum, they read:
(

DµDµ + µ2
eff(t) − 2λφ†φ − κTrFµν F̃µν

)

φ = 0, (2.6)

D0

(

1

g2
Ea

k − 2κφ†φBa
k

)

− εklmDl

(

1

g2
Ba

m + 2κφ†φEa
m

)

+ ja
k = 0. (2.7)

with Ea
k = F a

k0, Ba
k = εklmF a

lm/2, Dl is the adjoint covariant derivative Dac
µ = δac∂µ+εabcA

b
µ

and ja
µ is the SU(2) current from the Higgs field,

ja
µ = i (Dµφ)†

τa

2
φ − iφ† τ

a

2
Dµφ. (2.8)

The Gauss constraint,

Dk

(

1

g2
Ea

k − 2κφ†φBa
k

)

+ ja
0 = 0, (2.9)

should be imposed on the initial condition, and will then be conserved by the equations of

motion.

We use periodic boundary conditions with spatial volume L3, and study the evolution

of the Higgs expectation value,

φ̃2 =
1

L3

∫

d3x
φ†φ

v2/2
, (2.10)

the Chern-Simons number,

Ncs(t) − Ncs(0) =
1

16π2

∫

dt

∫

d3xTrFµν F̃µν , (2.11)

and the Higgs winding number,

Nw =
1

24π2

∫

d3x εijkTr

[

(∂iU)U †(∂jU)U †(∂kU)U †

]

, U =
Φ

√

1
2
TrΦ†Φ

, Φ = (iτ2φ
∗, φ).

(2.12)

Nw is integer and can only change if there is a zero of the Higgs field. Such a zero is

energetically unfavourable. Once the Higgs field has settled near the bottom of the potential

(φ̃2 ≈ 1) and the temperature is relatively low (≈ 50 GeV [17]), no further changes should

be seen in Higgs winding. In equilibrium, at sufficiently high temperature, winding number

changing transitions occur when the Higgs field goes through sphaleron-like configurations.

(Way) out of equilibrium and in the presence of a large number of Higgs zero’s, winding

number can change readily. Winding and unwinding during the tachyonic electroweak

transition was studied in [21, 29].
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Ncs is integer in the gauge vacua, and equal to Nw. At finite temperature (or finite

energy density, out of equilibrium), it need not be integer and may be very different from

Nw. Still, as the system thermalises to a low temperature, we would expect the Chern-

Simons number to relax to a value close to the winding number. This is what we see

happening for late times. We will use this fact to simulate only until the Higgs winding

has settled and the transition is over. This winding will then tell us what the asymmetry

in Chern-Simons number would be, had we waited for it to settle.

As was mentioned in [22], a good lattice implementation of FF̃ results in implicit

equations of motion, which require iterative solving. In combination with the number

of terms arising from FF̃ , this means an increase of computer running time by roughly a

factor 10. The work presented here amounts to about 30 CPU-years, running on 3GHz Xeon

processors. For the numerical simulations we used a 903 lattice with spacing a = 0.3m−1
H .

Finite-spacing effects may be expected to be small, provided that the occupation numbers

of the UV modes (nk, k = O(a−1)) of the fields is small compared to the physical modes

k = O(mH). For times used in this work, t . 100m−1
H , this is the case [17]. Classical

thermalization will eventually lead to higher occupation of the UV modes. The volume

was (27m−1
H )3, or (13.5m−1

W )3 for our largest mH/mW ratio, so finite-volume effects are also

expected to be reasonably small. A systematic study of spacing and/or volume dependence

is beyond the scope of this work.

2.2 CP symmetric initial conditions

We initialise our Higgs field using the “just the half” method [20] (also used in [30 –

32, 17, 22]). An ensemble of configurations is generated reproducing the quantum two-point

functions in the vacuum before the quench,

〈φkφ†
k
〉 =

1

2ωk

, 〈πkπ†
k
〉 =

ωk

2
, ωk =

√

µ2 + k2, k < µ, (2.13)

with φk = L−3/2
∫

d3x e−ikx φ(x), and similarly for π. Gauge fields Ai are zero initially,

with their canonical momenta Ei determined through the Gauss constraint.

The ensemble of initial configurations is CP-symmetric. However, in a numerical simu-

lation one only has a finite number of initial configurations available. Let N ≡ 1
M

∑M
j=1 Nj ,

be the numerical estimate for 〈N〉, where N = Ncs or Nw and M is the number of initial

configurations. Even for δcp = 0, N is typically non-zero because of statistical fluctuations.

In a plot of N versus δcp this leads to large uncertainties in the slope dN/dδcp near the

origin. Previously [22] we dealt with this problem by using the same series of pseudo ran-

dom numbers for δcp = 0 and δcp 6= 0. Here we avoid it by including the CP-conjugate

configuration with every randomly generated initial configuration.

We define the observables

∆Ncs =
Ncs + NCP

cs

2
, ∆Nw =

Nw + NCP
w

2
, (2.14)

where N,NCP correspond to the values for a CP-conjugate pair of initial configurations,

as in (2.21). Taking ensemble averages, we obviously have

〈∆Ncs〉 = 〈Ncs〉, 〈∆Nw〉 = 〈Nw〉. (2.15)
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These observables have the advantage that they cancel out some of the statistical noise. In

particular, ∆W takes integer and half-integer values, which reduces fluctuations. Standard

errors calculated in terms of ∆ are smaller than for N . We have

σ2
∆ =

〈

(

N + NCP

2

)2
〉

−
〈

N + NCP

2

〉2

=
1

2

(

σ2
N + 〈NNCP 〉 − 〈N〉〈NCP 〉

)

, (2.16)

where we used

σ2
N = 〈N2〉 − 〈N〉2 = 〈N2

CP 〉 − 〈NCP 〉2. (2.17)

This gives an error estimate of

error2
∆ =

1
2
(σ2

N + 〈NNCP 〉 − 〈N〉〈NCP 〉)
M/2 − 1

, (2.18)

where M/2 is the number of pairs of configurations. It may be compared with using simply

the observable N with M random initial configurations,

error2
N =

σ2
N

M − 1
. (2.19)

In our case, N ' −NCP, in which case the cross correlator in (2.18) is large and negative

(〈NCP 〉 = 〈N〉), reducing the error. In the limit of no cross-correlation and M À 1, the

two error estimates (2.18), (2.19) coincide.

Let a prime denote the operation of CP conjugation,

φ′(x, t) = φ′(−x, t)∗, A′
k(x, t) = −Ak(−x, t)T , (2.20)

where ∗ denotes complex conjugation and T denotes transposition. If φ,A are a solution

of the equations of motion with δcp, then φ′, A′ are a solution with −δcp and CP-conjugate

initial conditions. As before, let NCP (δcp) denotes the final N resulting from CP-conjugate

initial conditions without changing δcp. Since N is odd under CP, it follows that

NCP (δcp) = −N(−δcp), (2.21)

as illustrated by the following diagram (δ ≡ δcp)

φ(x, 0)
t,δ−→ N(δ)

↓ CP

φ′(x, 0)
t,−δ−→ N ′(−δ) = −N(−δ)

(2.22)

Expansion in δ,

N = N0 + N1δ + N2δ
2 + O(δ3), ∆ = N1δ + O(δ3), (2.23)

gives

〈N〉 = 〈N1〉δ + 〈N2〉δ2 + · · · , (2.24)

σ2
N = 〈N2

0 〉 + 2〈N0N1〉δ + 〈2N0N2 + N2
1 〉δ2 + · · · , (2.25)

σ2
∆ = 〈N2

1 〉δ2 + O(δ4). (2.26)
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Figure 1: Example of CP conjugate pairs of configurations. Shown is the time evolution of φ̃2

(black, dot-dash), Ncs (red, dash) and Nw (green, full) for δcp = 1, mH/mW = 2. In one case,

the CP violation has very little effect (left) and ∆Nw
= 0, in the other (right) the result is a net

difference of ∆Nw
= −1/2.

Note that the zeroth and first order terms are absent in σ2
∆, suggesting a strong reduction

in statistical noise for small δcp.

Because of (2.21) we just need to run with ±δcp, rather than the actual CP-conjugate

configurations. We checked this numerically. In the following we will no longer distinguish

between the exact 〈N〉 and the numerical estimate N .

3. Numerical results

In figure 1(left) we show the evolution from a single initial configuration, evolved with

δcp = ±1 and mH = 2mW . For the two trajectories the Higgs field φ̃2 performs symmetry

breaking in an identical way, settling near its vacuum expectation value (here scaled to

2). At the same time, Chern-Simons number grows in an almost symmetric way. Shown

here is Ncs(δcp = 1) and −Ncs(δcp = −1) = NCP
cs (δcp = 1). The Higgs winding number

is truly symmetric after settling near time 10 (the glitches of magnitude less than one are

discretisation errors). Obviously, this is a configuration pair with no generated asymmetry,

∆Nw = 0. Figure 1(right) is a similar pair of trajectories, but now ∆Nw = −1/2.

We run until mHt = 100. Figure 2 shows the resulting values of Nw for +δcp black

and −δcp red/grey, using an ensemble of 96 pairs of configurations. 〈∆Nw〉 is (a half times)

the black minus the red values, averaged over the 96 pairs.

From now on all results are for the ensemble averaged quantities 〈Nw〉, 〈Ncs〉. Although

the final asymmetry is what we are ultimately interested in, the full time evolution shows

complicated features. There is a linear regime during the first rolling off of the Higgs field.

Then a non-linear back-reaction regime, where the behaviour of 〈Ncs〉 can be described

approximately in terms of diffusion under a time-dependent chemical potential [12, 21]. A

nice aspect of this description is that the dependence on the CP-violation is clearly linear.

This regime ends when 〈Nw〉 begins moving away from zero, to settle near the final value.

The change of 〈Nw〉 is determined by the generated 〈Ncs〉 as well as the availability of zeros

of the Higgs field, and is as such a very complicated process.
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Figure 2: The final values of Nw for 96 pairs of configurations. Black is Nw(δcp), red/grey

Nw(−δcp) = −NCP
w (δcp). When they are not on top of each other, a net asymmetry has been

produced; mH/mW = 2, δcp = 1.

0 2 4 6 8
m

H
t

0.0001

0.001

0.01

0.1

1

<Ncs>

Figure 3: Comparing the initial bump from the full simulation (red, dash) to the estimate from

the linearised and homogeneous equations of motion, eq. (3.1) (blue, full).

In the following we will express time in units of the Higgs mass, τ = mHt.

3.1 Initial rise

In the initial tachyonic instability of the Higgs field, low momentum modes dominate.

In [22] we solved for the early time evolution in the linear regime, making a homogeneity

approximation and treating the CP violation as a perturbation. The result was that the

generated asymmetry during the first roll-off of the Higgs field is given by:

〈Ncs〉 =

√
2δcp(LmH)3

64π4(1 + c)2
〈B̄2〉
m4

H

φ̃2. (3.1)
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The parameter c is to be extracted from the growth of the magnetic field B2 ∝ exp(2
√

2c τ),

and B2 and φ̃2 are taken from the simulations. For the case mH/mW = 2, c ' 0.62, for

mH/mW =
√

2, c ' 0.67. Figure 3 shows the result for 〈Ncs〉 from eq. (3.1) (blue, full)

and the full simulation (red, dash) for the case mH/mW = 2. Notice that the scale is

logarithmic. The discrepancy is 20 percent up to time 5. When scaling the simulations for

various δcp linearly with δcp, the red curves fall on top of each other.

3.2 Early back-reaction: Asymmetric diffusion

The value of φ̃2 in figure 1 indicates that the system becomes non-linear after τ ' 5. We

may get some insight into the early subsequent behaviour by considering the diffusion of

Chern-Simons number under the influence of a chemical potential [33, 12, 21]. Making an

approximation in which φ†φ in the CP-violating term in the action (2.1) is replaced by

its spatial average and making a partial integration, exhibits a time-dependent chemical

potential-like interaction for Chern-Simons number

−
∫

d4xκφ†φTrFµν F̃µν → −
∫

dt κ
v2

2
φ̃2

d

dt
16π2Ncs =

∫

dt µncs
ch Ncs, (3.2)

with

µncs
ch (t) =

6 δcp

g2

d

dt
φ̃2(t), (3.3)

where we also used the definition (2.4) of δcp and m2
W = 1

4
g2v2. The effective diffusion rate

of Chern-Simons number is1

Γ =
d

dt

(

〈N2
cs〉 − 〈Ncs〉2

)

. (3.4)

The generated Chern-Simons number asymmetry is then deduced to be [12, 21]

〈Ncs〉(t) =

∫ t

0

dt′
µncs

ch (t′)Γ(t′)

Teff

, (3.5)

where Teff can be thought of as some effective temperature of the relevant low momentum

modes.

Because the gauge fields become large as the transition proceeds, the effective dif-

fusion rate grows in time. Performing the integration directly from the time-dependent,

numerically determined Γ(t) and φ̃2(t) (figure 4) and eq. (3.5), one reproduces not only

the initial rise, but also the subsequent dip, resulting in an asymmetry with the opposite

sign from the initial rise (figure 5). Indeed, because the diffusion rate is larger towards the

end of the transition (τ ≈ 7), it conspires with the Higgs field oscillation (with negative

slope, effective chemical potential) to qualitatively change the final outcome. In this ar-

gument, Teff is an adjustable parameter, in figure 5 taken to be ' 8mH . This corresponds

to Teff = 1.3TeV, which is quite large. Once chosen, the semi-quantitative agreement for

different δcp is convincing. The evolution of 〈Ncs〉 is described by eq. (3.5) until τ ' 8−10.

1In equilibrium, Γ is called the sphaleron rate, which describes the widening of the distribution of Chern-

Simons number. In the present out-of-equilibrium context, it does not have this straightforward physical

interpretation.
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Figure 4: The effective diffusion rate Γ(t), eq. (3.4) (red, dash), and the time derivative of the

Higgs field, proportional to µncs
ch (t), eq. (3.3) (black, full), both in units of mH .

0 5 10 15 20
m

H
t

-0.4

-0.2

0

0.2

<
N

cs
>

Higgs/5
<Ncs>, all    

cp
, rescaled to    

cp
=1

<Nw>, all    
cp

, rescaled to    
cp

=1

<Ncs>, linear diffusion approx.

δ δ

δ δ

Figure 5: Comparing eq. (3.5) (blue, full) for 〈Ncs〉 to the full simulation (red, dash), mH/mW = 2,

δcp = 1/8, 1/4, 1/2, 3/4, 1. The dashed red lines are curves for all δcp, simply rescaled to δcp = 1.

The full green/grey lines are 〈Nw〉, also rescaled. Notice that the average winding number does not

move until around τ = 10, the time of the first minimum of 〈φ̃2〉(t) (black, dot-dash).

The agreement ends around time τ = 10, which is also when the Higgs winding begins

to grow. Apparently, the linear-response treatment for the Chern-Simons number cannot

account for the dynamics of winding and unwinding. For this, only the full non-linear

simulations give a correct picture.

3.3 Intermediate times: Higgs winding creation

As we have seen, up to τ = 10 the statistical treatment of the Chern-Simons number is
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Figure 6: The time history of 〈φ̃2〉 (black, dot-dash), 〈Ncs〉 (red, dash) and 〈Nw〉 (green, full) for

mH/mW = 2, δcp = 1.

quite successful; There is a net 〈Ncs〉, but still a tiny 〈Nw〉. Energetically, the two are

strongly favoured to end up near each other at later times. This means that one has to

adjust to the other2.

Higgs winding only changes when there is a zero of the Higgs field. The average Higgs

field φ̃2 continues to oscillate some time after the transition (figure 6). When it is low,

the probability of zeros in φ itself is high. The creation and evolution of (near) zeros was

studied in [29], where it was seen that they indeed act as nuclei for winding number change

as well as sphaleron-like transitions. It was also seen, that multiple “generations” of (near)

zeros are generated, corresponding to subsequent minima of the Higgs oscillations. First

generation nuclei are the most numerous, subsequent generations are less populated.

The existence of such zeros suggests why in the first Higgs oscillation, around τ = 12

the Higgs winding is able to adjust to the Chern-Simons number (figure 6). For late times

the winding number can no longer change, except through true sphaleron transition, for

which the time scale at these temperatures is very long compared to the time scale of

the simulation. We can estimate it through Γsph ∝ e−Esph/T , with Esph the sphaleron

energy of order 10 TeV or 60 mH . At time ' 100m−1
H , a Bose-Einstein fit to the particle

distribution functions gives T/mH ' 0.4 [17], suggesting that the sphaleron rate is indeed

very small at these times. It also suggests that Teff as extracted from the asymmetric

diffusion (section 3.2) should be interpreted with care. At longer times, the Chern-Simons

number will settle close to the winding number value3.

3.4 Dependence on Higgs mass

The end result turns out to be very sensitive to the Higgs to W mass ratio. Here we present

2A similar situation has been studied in [34, 35], where it was seen that in single trajectories the relative

size of the winding and Chern-Simons number ‘blobs’ is an indicator whether Nw adjusts to Ncs or vice

versa.
3This we have checked for a few configurations, running to τ = 500.
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Figure 7: The time history of 〈φ̃2〉 (black, dot-dash), 〈Ncs〉 (red, dash) and 〈Nw〉 (green, full) for

different mass ratios; mH/mW =
√

2 (left) and
√

3 (right); δcp = 1.
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Figure 8: The Higgs mass dependence of the asymmetry in the analogous model in 1+1 (left) and

3+1 (right) dimensions; δcp = 1, κ is the analogue of δcp. Lefthand plot from [20]. In the righthand

plot, blue circles are the simulation presented here for δcp = 1, red squares are the results from the

fits to the δcp-dependence (see below) and the black circle is the mH/mW = 1 result from [22].

results for mH =
√

2 mW and
√

3 mW . In the former case (figure 7, left), the overall sign

is opposite to what we saw in figure 6. In the latter (figure 7, right), we are apparently in

an intermediate case, where although there is still the initial linear regime, the dynamics

conspires to give a final asymmetry consistent with zero. The equation of motion of the

Higgs field depends on the time derivative of the Chern-Simons number, and the frequencies

and phases of these oscillation can conspire to give asymmetries of opposite signs.

The large dependence on the Higgs mass is reminiscent of the situation for the anal-

ogous Abelian-Higgs system in 1+1 dimensions [20]. There, we were able to span a much

larger range of masses, and the resulting curve looked quite complicated (figure 8 (left)).

For details about similarities and differences between the two studies, see [20]. At present

we do not have the computational resources to perform an equally thorough study in 3+1

dimensions. But using the result for mH = mW from [22] to guide us4, we can tentatively

4An error in the application of δcp in [22] has been corrected. Furthermore, results of [22] should be
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draw a plot of the mass dependence, figure 8 (right).

3.5 Dependence on CP-violation

The nonlinear behaviour at intermediate times might also destroy the linear dependence of

the final asymmetry on δcp. To study this we vary δcp using the same initial configurations

for all δcp. To get meaningful errors in the case mH/mW = 2, we had to increase the number

of CP-conjugate pairs to 192. Figure 9 shows the final value of the average winding number

vs. δcp up to δcp = 1. Within errors, the dependence is consistent with linear. The fits in

figure 9 and the one final value from figure 7 (right) lead to an asymmetry

〈Nw〉 = (0.075 ± 0.006)δcp , mH =
√

2mW ,

〈Nw〉 = (0.005 ± 0.020)δcp , mH =
√

3mW ,

〈Nw〉 = (−0.0359 ± 0.0040)δcp , mH = 2mW . (3.6)

4. Conclusion

Given the final ensemble average of the winding number, we can make an estimate for the

generated baryon asymmetry. We use

nB

nγ
= 7.04

nB

s
, s =

2π2

45
g∗T

3,
π2

30
g∗T

4 = ε =
m4

H

16λ
, (4.1)

The entropy s is given in terms of the reheating temperature Treh and g∗ the number

of relativistic degrees of freedom and the reheating temperature deduced from the initial

energy density in the Higgs potential, T/mH ' 0.45. We also assume, as discussed earlier,

that the late times 〈Ncs〉 will be equal to 〈Nw〉 at the end of our simulation. We have

nB

nγ
= 7.04

3〈Nw〉
(LmH )3

(

45

2π2

)(

15

π2g2

)−3/4

g
−1/4
∗

(

mH

mW

)3/2

. (4.2)

multiplied by g2 = 4/9, the initial conditions for the case mH = mW at small κ were different (‘thermal’,

resulting in somewhat smaller final results), and the quoted value refers to 〈Ncs〉 rather than 〈Nw〉.
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With LmH = 27, g = 2/3 and g∗ = 86.25, this gives

nB

nγ
= 0.32 × 10−3 × 〈Nw〉

(

mH

mW

)3/2

. (4.3)

Finally, using the numerical results (3.6),

nB

nγ
= (0.40 ± 0.03) × 10−4 × δcp, mH =

√
2mW ,

= (0.04 ± 0.15) × 10−4 × δcp, mH =
√

3mW ,

= −(0.32 ± 0.04) × 10−4 × δcp, mH = 2mW ,

Compared to [22] the CP-symmetric initial conditions and the emphasis on the Higgs

winding number allowed us to get a much clearer signal without much larger statistics.

This was necessary in order to zoom in on the range of δcp where the dependence is linear.

In particular, we were able to pin-point the time at which the asymmetry is generated to

the first minimum of the Higgs field evolution. This is when the average winding number is

able to change and accommodate the initial asymmetry in the Chern-Simons number. In

the range δcp = [0, 1], the asymmetry is linear in δcp, allowing us to interpolate to the very

small values relevant for the observed asymmetry. To reproduce the observations (1.1),

we need δcp ' 2 × 10−5 (mH = 2mW ). Presumably, δcp should be somewhat larger than

this, when taking into account the dynamics of the inflaton, fermions and additional gauge

fields, which may in various ways affect the dynamics of the SU(2)-Higgs system [19].

In particular, the assumption of an instantaneous quench leads to quite wild behaviour.

In very slow quenches, the system may never be sufficiently out of equilibrium, and the

asymmetry should be correspondingly small. The dependence on the quench time will be

presented in a separate publication [25].

The mass of the Higgs field in the Standard Model is expected to be smaller than

200 GeV ' 2.5mW . We have probed the allowed region and found a dramatic dependence

on mH . Whether or not this effect survives at finite quench times is not yet known, and it

is clear from the semi-analytic linear treatment in section 3.2, that the generic sign of the

asymmetry is opposite to that of δcp for mH = 2mW . Still, both for mH =
√

2mW and

for mH = mW [22] the final result has the opposite sign, i.e. the same sign as δcp.
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